
PMA324 Chaos 2009–10

Question Sheet 1

To be handed in on Thursday 8 October.

1. Sketch the graphs of the following functions of x: 2 sin(2 sin x), cos(cos x), 1− (1− x2)2, 1− (1−
(1−x2)2)2. (Only sketch graphs are required. Use the fact that these are iterative powers of easy
functions to think out, directly, how they vary as x runs from −∞ to +∞. Please do not use
graphics calculators/MAPLE.)

2. Let X be the four-point set {0, 1, 2, 3} and define f : X → X by f(0) = 1, f(1) = 2, f(2) = 3,
f(3) = 0. Show that 0 is periodic for each of the functions f , f2, f3 and f4, and find its order
(i.e. least period) in each case.

3. As in the lectures, let S1 = {z ∈ C : |z| = 1} and let f : S1 → S1 be defined by f(z) = z2

(z ∈ S1). Using the characterization of periodic points of period n given in the lectures, list
the periodic points of order n for n = 1, 2, 3, 4. How many periodic points of orders 6 and 8 are
there?

For each n, the set of all periodic points of order n is a disjoint union of orbits. List the orbits
for the periodic points you have found above for n = 1, 2, 3, 4.

4. Let f : X → X be any mapping on a set X. Suppose that p ∈ X is a periodic point of order a
for f and that n is a positive integer. Show that p is periodic for fn of period r if and only if nr is
a common multiple of a and n. Deduce that p is periodic for fn with order a/(a, n) where (a, n)
denotes the highest common factor of a and n. (Remember that the lowest common multiple of
a and n is an/(a, n).)



PMA324 Chaos 2009–10

Question Sheet 1: Solutions

1. Sketch the graphs of the following functions of x: 2 sin(2 sin x), cos(cos x), 1− (1− x2)2, 1− (1−
(1− x2)2)2.

This will be discussed in lectures using Maple.

2. Let X be the four-point set {0, 1, 2, 3} and define f : X → X by f(0) = 1, f(1) = 2, f(2) =
3, f(3) = 0. Show that 0 is periodic for each of the functions f , f2, f3 and f4, and find its order
(i.e. least period) in each case. We have f(0) = 1, f2(0) = 2, f3(0) = 0, f4(0) = 0, so 0 is periodic
of order 4 for f and is a fixed point (periodic point, order 1) for f4. Moreover, f2(0) = 2, f4(0) = 0,
so 0 is periodic of order 2 for f2. For f3, we have f3(0) = 3, f6(0) = 2, f9(0) = 1, f12(0) = 0, so
0 is periodic of order 4 for f3.

3. As in the lectures, let S1 = {z ∈ C : |z| = 1} and let f : S1 → S1 be defined by f(z) = z2 (z ∈ S1).
Using the characterization of periodic points of period n given in the lectures, list the periodic
points of order n for n = 1, 2, 3, 4. How many periodic points of orders 6 and 8 are there?

For each n, the set of all periodic points of order n is a disjoint union of orbits. List the orbits
for the periodic points you have found above for n = 1, 2, 3, 4.

The periodic points of period n are the (2n − 1)th roots of unity:

exp
(

2kπi

2n − 1

)
(k = 0, 1, 2, . . . , 2n − 2).

n = 1 There is just one fixed point, namely z = 1: its orbit is just a single point {1}.
n = 2 There are 22 − 1 = 3 periodic points of period 2, namely

z = 1, exp
(

2πi

3

)
, exp

(
4πi

3

)
.

Of these, only the point 1 is fixed; the remaining points,

z = exp
(

2πi

3

)
, exp

(
4πi

3

)
,

are of order 2. These points are in orbits of size 2, so we have a single orbit
{

exp
(

2πi

3

)
, exp

(
4πi

3

)}
.

n = 3 There are 23 − 1 = 7 periodic points of period 3, namely

z = 1, exp
(

2πi

7

)
, exp

(
4πi

7

)
, exp

(
6πi

7

)
, exp

(
8πi

7

)
, exp

(
10πi

7

)
, exp

(
12πi

7

)
.

Of these, only the point 1 is fixed; the remaining points,

z = exp
(

2πi

7

)
, exp

(
4πi

7

)
, exp

(
6πi

7

)
, exp

(
8πi

7

)
exp

(
10πi

7

)
, exp

(
12πi

7

)
.

are of order 3. These points are in orbits of size 3. We trace the action of f on these points
and find that,

exp
(

2πi

7

)
7→ exp

(
4πi

7

)
7→ exp

(
8πi

7

)
7→ exp

(
2πi

7

)
,
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so we have an orbit {
exp

(
2πi

7

)
, exp

(
4πi

7

)
, exp

(
8πi

7

)}
.

Likewise (or just because it’s all that’s left), the other orbit is
{

exp
(

6πi

7

)
, exp

(
12πi

7

)
, exp

(
10πi

7

)}
.

n = 4 There are 24 − 1 = 15 periodic points of period 4, namely

z = 1, exp
(

2πi

15

)
, exp

(
4πi

15

)
, exp

(
2πi

5

)
, exp

(
8πi

15

)
,

exp
(

2πi

3

)
, exp

(
4πi

5

)
, exp

(
14πi

15

)
, exp

(
16πi

15

)
, exp

(
6πi

5

)
,

exp
(

4πi

3

)
exp

(
22πi

15

)
, exp

(
8πi

5

)
, exp

(
26πi

15

)
, exp

(
28πi

15

)
.

Of these, only the point 1 is fixed, and the points

z = exp
(

2πi

3

)
, exp

(
4πi

3

)
,

are of order 2. The remaining 12 points fit into 3 disjoint orbits, each or size 4, as follows{
exp

(
2πi

15

)
, exp

(
4πi

15

)
, exp

(
8πi

15

)
, exp

(
16πi

15

)}
,

{
exp

(
6πi

15

)
, exp

(
12πi

15

)
, exp

(
24πi

15

)
, exp

(
6πi

5

)}
,

{
exp

(
14πi

15

)
, exp

(
28πi

15

)
, exp

(
26πi

15

)
, exp

(
22πi

5

)}
.

n = 6 There are 26 − 1 = 63 periodic points of period 6. Of these, 1 is fixed, 2 are of order 2,
and 6 are of order 3. That leaves 54 of order 6, which split into 9 disjoint orbits.

n = 8 There are 28 − 1 = 255 periodic points of period 8. Of these, 1 is fixed, 2 are of order 2,
and 12 are of order 4. That leaves 240 of order 8, which split into 30 disjoint orbits.

4. Let f : X → X be any mapping on a set X. Suppose that p ∈ X is a periodic point of order a
for f and that n is a positive integer. Show that p is periodic for fn of period r if and only if nr is
a common multiple of a and n. Deduce that p is periodic for fn with order a/(a, n) where (a, n)
denotes the highest common factor of a and n. (Remember that the lowest common multiple of a
and n is an/(a, n).)
We have

p periodic for fn period r ⇐⇒ (fn)r(p) = p

⇐⇒ fnr(p) = p

⇐⇒ p periodic for f period nr

⇐⇒ nr is a multiple of a.

Since nr is already a multiple of n, the last line is equivalent to nr being a common multiple of a
and n.
Thus p is a periodic point for fn. Its periods are the r such that nr is a common multiple of a
and n. Its order is the least such r. Now all the common multiples of a and n are of the form nr
for some r, so the order of p for fn is the r such that nr is the least common multiple of a and n.
Thus

order =
an/(a, n)

n
=

a

(a, n)
.
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PMA324 Chaos 2009–10

Question Sheet 2

To be handed in on Thursday 15 October.

1. Let f : X → X be a continuous function on a set X ⊆ R.

(a) Show that the set Fix(f) of all fixed points of f is closed. (Recall that a set S ⊆ Rn is closed
if and only if every sequence in S that converges to a point in Rn has its limit in S.)

(b) Hence, or otherwise, show that, for each positive integer n, the set Pern(f) of all periodic
points of period n is closed. (You may use without proof the fact that the composition f ◦ g
of two continuous functions is necessarily continuous.)

(c) By considering the function f : R → R defined by f(x) = −x, or otherwise, show that it is
not necessarily true that the set of periodic points of order n is closed.

(d) Show that, for a continuous f : X → X, if the orders of the periodic points of f are all
less than or equal to some fixed number K, then the set Per(f) of all periodic points of f is
closed. You may use without proof the fact that finite unions of closed sets are necessarily
closed.

2. Give an example of a set X ⊆ Rn for some n and a continuous function f : X → X such that
Per(f) is not closed.



PMA324 Chaos 2009–10

Question Sheet 2: Solutions

1. Let f : X → X be a continuous function on a set X ⊆ R.

(a) Show that the set Fix(f) of all fixed points of f is closed.
Let (xn) be a sequence of fixed points of f with xn → x. We must show that x is a fixed
point of f . Since f is continuous, f(xn) → f(x). Therefore xn = f(xn) → f(x) and xn → x.
Hence f(x) = x; i.e. x is a fixed point of f .

(b) Hence, or otherwise, show that, for each positive integer n, the set Pern(f) of all periodic
points of period n is closed. (You may use without proof the fact that the composition f ◦ g
of two continuous functions is necessarily continuous.)
Since f is continuous and compositions of continuous functions are continuous, the nth
iterative power fn is continuous. Now Pern(f) = Fix(fn), so the result just proved, applied
to fn in place of f , shows that Pern(f) is closed.

(c) By considering the function f : R → R defined by f(x) = −x, or otherwise, show that it is
not necessarily true that the set of periodic points of order n is closed.
For the function f : R→ R given by f(x) = −x, the point 0 is fixed and all other points are
periodic of order 2. Thus the set of points periodic of order 2 is R \ {0}, which is not closed
in R.

(d) Show that, for a continuous f : X → X, if the orders of the periodic points of f are all
less than or equal to some fixed number K, then the set Per(f) of all periodic points of f is
closed. You may use without proof the fact that finite unions of closed sets are necessarily
closed.
We have

Per(f) =
K⋃

n=1

Pern(f),

so Per(f) is a finite union of closed sets and is therefore closed.
Alternatively, we may observe that

Per(f) = PerK!(f),

because K! is a multiple of every number less than or equal to K Therefore Per(f) is closed.

2. Give an example of a set X ⊆ Rn for some n and a continuous function f : X → X such that
Per(f) is not closed.

Example 1.7 in the notes (the function f : S1 → S1 given by f(θ) = 2 θ (mod 2π) provides a
suitable example. We have already observed that Per(f) is dense in S1 and that not every point
of S1 is periodic (some, such as θ = π are eventually periodic but not periodic). These two facts
imply that Per(f) is not closed.



PMA324 Chaos 2009–10

Question Sheet 3

To be handed in on Thursday 22 October.

1. For each of the following functions, use a calculator to iterate the function from a (small) selection
of initial values. Use graphical iteration, again from a small selection of initial values, to illustrate
the dynamics of the function. Proofs are not required – the idea is to get the ‘feel’ of graphical
iteration. (Remember to have your calculator in radians mode.)

(a) C(x) = cos(x), (b) S(x) = sin(x), (c) E(x) = ex, (d) F (x) = ex−1, (e) F (x) = arctan(x).

2. For each of the following functions f , find all the fixed points and classify them as attracting,
repelling or non-hyperbolic.

(a) f(x) = x3 − 1
9x;

(b) f(x) = x3 − x.

3. Prove Theorem (4.6): that if p is a repelling fixed point of a continuously differentiable function
f : R→ R, (i.e. |f ′(p)| > 1), then there is an open interval U = (p− δ, p + δ) such that, for every
x ∈ U \ {p}, there is a positive integer n such that fn(x) 6∈ U .



PMA324 Chaos 2009–10

Question Sheet 3: Solutions

1. For each of the following functions, use a calculator to iterate the function from a (small) selection
of initial values. Use graphical iteration, again from a small selection of initial values, to illustrate
the dynamics of the function. Proofs are not required. (Remember to have your calculator in
radians mode.)

(a) C(x) = cos(x), (b) S(x) = sin(x), (c) E(x) = ex, (d) F (x) = ex−1, (e) F (x) = arctan(x).

The graphical iterations are given on a separate sheet. Note that for the functions C,S and A,
the first application of the function produces a value in [−1, 1]. Thereafter, in the cases of S and
A, subsequent iterations converge to the fixed point 0 from above or from below. In the case of
C, the second iteration produces a value in [0, 1]; subsequent iterations converge to a fixed point
0.739 . . . alternating above and below. The function E has no fixed points: from all initial values,
iterates tend to +∞. The function F has a fixed point 1: from initial values less than or equal
to 1, iterates converge upwards to 1; from initial values greater than 1, iterates tend to +∞.

2. For each of the following functions f , find all the fixed points and classify them as attracting,
repelling or non-hyperbolic.

(a) f(x) = x3 − 1
9x;

Solving x = x3 − 1
9x, we find the fixed points at x = 0, ±√10/3. Since f ′(x) = 3x2 − 1

9 ,
we have: f ′(0) = − 1

9 , making 0 attractive; f ′(±√10/3) = 29/9, making the points ±√10/3
both repelling.

(b) f(x) = x3 − x.
The fixed points are at x = 0, ±√2, f ′(0) = −1, making 0 non-hyperbolic, and f ′(±√2) = 5,
making the points ±√2 both repelling.

3. Prove Theorem (4.6): that if p is a repelling fixed point of a continuously differentiable function
f : R→ R, (i.e. |f ′(p)| > 1), then there is an open interval U = (p− δ, p + δ) such that, for every
x ∈ U \ {p}, there is a positive integer n such that fn(x) 6∈ U .

Suppose that p is a fixed point of f and |f ′(p)| > 1. Let k = (1+ |f ′(p)|)/2 and ε = (|f ′(p)|−1)/2.

Since f ′ is continuous, |f ′| is continuous, so there exists δ > 0 such that

1 < k = |f ′(p)| − ε < |f ′(y)| < |f ′(p)|+ ε

for all y ∈ (p− δ, p + δ).

By the Mean Value Theorem, if 0 < |x− p| < δ, then there exists y between x and p such that

f(x)− f(p)
x− p

= f ′(y),

so ∣∣∣∣
f(x)− f(p)

x− p

∣∣∣∣ = |f ′(y)| > k.

Thus
|f(x)− f(p)| > k|x− p| (x ∈ (p− δ, p + δ)),

i.e. |f(x)− p| > k|x− p| (x ∈ (p− δ, p + δ)).

So, if x ∈ (p− δ, p + δ) and |f(x)− p| < δ, then

|f2(x)− p| > k|f(x)− p| > k2|x− p|;



et cetera. Thus we have
|fn(x)− p| > kn|x− p|,

provided that
x, f(x), f2(x), . . . , fn−1(x) ∈ (p− δ, p + δ).

Since k > 1, if x 6= p then kn|x− p| → ∞ as n →∞. Consequently, there must exist n such that
fn(x) 6∈ U . This is the desired result.

PMA324 Chaos 2009–10

Question Sheet 4

Not to be handed in. Solutions will be posted on Thursday 29 October.

1. Let f : R→ R be defined by f(x) = 2x3 − x2 − x + 1, find all the fixed points and classify them
as attracting, repelling or non-hyperbolic.

2. By definition, a periodic point p of a function f is hyperbolic if and only if |(fm)′(p)| 6= 1 where m
is the order of p for f . Show that this is equivalent to requiring |(fM )′(p)| 6= 1 where M is any
period of p for f ; i.e. that p be a hyperbolic fixed point of fM . (Hint: use the ‘Note’ in lectures
about derivatives of iterates.)

3. Show that, if p is a hyperbolic fixed point of a continuously differentiable function f : R → R,
then there is an interval (p − ε, p + ε) about p which contains no other fixed points of f ; i.e.
the hyperbolic fixed points are isolated. Deduce that if f has no periodic points of order greater
than N , for some finite N , then, for every hyperbolic periodic point p of f , there is an interval
(p − ε, p + ε) about p which contains no other periodic points of f ; i.e. the hyperbolic periodic
points of f are isolated. (Hint: find a common period for all the periodic points of f and use
question 2).



PMA324 Chaos 2009–10

Question Sheet 4: Solutions

1. Let f : R→ R be defined by f(x) = 2x3− x2− x + 1, find all the fixed points and classify them as
attracting, repelling or non-hyperbolic.

To find the fixed points, we solve f(x) − x = 0, i.e. the cubic 2x3 − x2 − 2x + 1 = 0. The roots
are x = +1,−1, 1/2. Then f ′(x) = 6x2 − 2x − 1, so f ′(1) = 3, f ′(−1) = 7 and f ′(1/2) = −1/2.
Therefore +1 and −1 are repelling and 1/2 is attracting.

2. By definition, a periodic point p of a function f is hyperbolic if and only if |(fm)′(p)| 6= 1 where m
is the order of p for f . Show that this is equivalent to requiring |(fM )′(p)| 6= 1 where M is any
period of p for f ; i.e. that p be a hyperbolic fixed point of fM . (Hint: use the ‘Note’ in lectures
about derivatives of iterates.)

Following the ‘Note’: if p is periodic for f , order m, and M = km is some period, then, by the
Chain Rule,

(fM )′(p) = f ′(fM−1(p)) (fM−1)′(p)
= f ′(fM−1(p)) f ′(fM−2(p)) (fM−2)′(p)

. . . = f ′(fM−1(p)) f ′(fM−2(p)) . . . f ′(f(p)) f ′(p)

= [f ′(pm) f ′(pm−1) . . . f ′(p2) f ′(p1)]
k

= [(fm)′(p)]k ,

where {p1, p2, . . . , pm} is the orbit of p. Hence |(fM )′(p)| 6= 1 if and only if |(fm)′(p)| 6= 1.

3. Show that, if p is a hyperbolic fixed point of a continuously differentiable function f : R → R,
then there is an interval (p− ε, p + ε) about p which contains no other fixed points of f ; i.e. the
hyperbolic fixed points are isolated.

Suppose the desired conclusion is false; suppose that for every ε > 0 there is a point q ∈ (p−ε, p+
ε) \ {p} with f(q) = q. Then, by the Mean Value Theorem, there exists x ∈ (p, q), (or x ∈ (q, p)
if q < p) such that

f ′(x) =
f(q)− f(p)

q − p
=

q − p

q − p
= 1.

Thus, for all ε > 0, there is a point x ∈ (p − ε, p + ε) with f ′(x) = 1. Since f ′ is continuous, it
follows that f ′(p) = 1, contradicting the hypothesis that p is hyperbolic.

Alternatively, one may argue that if p is hyperbolic, then p is either attracting or repelling. If p
is attracting, then there exists ε > 0 such that, for every x ∈ (p− ε, p+ ε), fn(x) → p as n →∞.
Thus there can be no fixed points in (p − ε, p + ε) \ {p}. Likewise, if p is repelling, then there
exists ε > 0 such that, for every x ∈ (p− ε, p + ε) \ {p}, fn(x) 6∈ (p− ε, p + ε) for some n. Thus,
again, there can be no fixed points in (p− ε, p + ε) \ {p}.
Deduce that if f has no periodic points of order greater than N , for some finite N , then, for every
hyperbolic periodic point p of f , there is an interval (p− ε, p + ε) about p which contains no other
periodic points of f ; i.e. the hyperbolic periodic points of f are isolated. (Hint: find a common
period for all the periodic points of f and use question 2).

If f has no periodic points of order greater than N , then M = N ! is a period of all the periodic
points of f . Thus, the periodic points of f are just the fixed points of fM . By question 2 the
hyperbolic periodic points of f are just the hyperbolic fixed points of fM . The result follows by
applying the first part of the question to fM .



PMA324 Chaos 2009–10

Question Sheet 5

Not to be handed in. Solutions will be posted on Thursday 5 November.

1. For µ > 0, let gµ : R→ R be defined by

gµ(x) =
µ

1 + x2
.

Show that gµ has one and only one fixed point p. (You will find that p is given, in terms of µ,
by a certain cubic equation. Fortunately, this question can be done without solving that cubic.
Alternatively, use MAPLE.)

Show that p is attracting for µ < 2, non-hyperbolic for µ = 2 and repelling for µ > 2.

2. Show that the value of µ beyond which the 2-cycle for Fµ born at µ = 3 is repelling (i.e. the next
bifurcation point beyond 3) is 1 +

√
6.

(This question is messy because it involves computing

(F 2
µ)′(q) = (F 2

µ)′(r) = F ′µ(q)F ′µ(r),

where q, r are two of the roots of the quartic F 2
µ(x) = x, the other two being 0 and p = (µ− 1)/µ.

Since you know two roots of this quartic, it is not too difficult to solve it; but it is neater to get
at sums and products of roots and solve the whole problem without ever finding q, r themselves.
Alternatively, use MAPLE.)

What is special about the parameter value µ = 1 +
√

5?



PMA324 Chaos 2009–10

Question Sheet 5: Solutions

1. For µ > 0, let gµ : R → R be defined by gµ(x) = µ/(1 + x2). Show that gµ has one and only one
fixed point p. (You will find that p is given, in terms of µ, by a certain cubic equation. Fortunately,
this question can be done without solving that cubic.)

Show that p is attracting for µ < 2, non-hyperbolic for µ = 2 and repelling for µ > 2.

Here is the manual solution; a MAPLE solution will be posted on the course web page.

A point p is a fixed point of gµ if and only if

p =
µ

1 + p2
,

i.e.
p3 + p = µ. (1)

This is a non-trivial cubic and so has at least one real root. To see that it has only one, we observe
that p3 + p is a strictly increasing function of p and so can take the value µ at most once. Note
that, since x3 + x is increasing and is zero and at x = 0, we have µ > 0 ⇒ p > 0.

To test whether p is attracting or repelling, we must look at |g′µ(p)|. Differentiating gµ, we obtain

g′µ(p) =
−2µp

(1 + p2)2
=

−2p2

(1 + p2)
,

on substituting for µ from (1). Therefore

p is attracting ⇔ 2p2

(1 + p2)
< 1

⇔ 2p2 < (1 + p2)
⇔ p < 1, since p > 0,

⇔ µ < 2.

The conditions for p to be repelling and non-hyperbolic follow by changing < to > and =, respec-
tively.

2. Show that the value of µ beyond which the 2-cycle for Fµ born at µ = 3 is repelling (i.e. the next
bifurcation point beyond 3) is 1 +

√
6.

(This question is messy because it involves computing

(F 2
µ)′(q) = (F 2

µ)′(r) = F ′µ(q)F ′µ(r),

where q, r are two of the roots of the quartic F 2
µ(x) = x, the other two being 0 and p = (µ− 1)/µ.

Since you know two roots of this quartic, it is not too difficult to solve it; but it is neater to get at
sums and products of roots and solve the whole problem without ever finding q, r themselves.)

What is special about the parameter value µ = 1 +
√

5?

Again, this is the manual solution; a MAPLE solution will be posted on the course web page.

The fixed points of Fµ are 0 and p = (µ− 1)/µ. These are therefore two of the fixed points of F 2
µ .

Let the other two be q, r. Then 0, p, q, r are the roots of the quartic F 2
µ(x) = x. Writing out this

quartic, it becomes
µ2x(1− x)(1− µx(1− x)) = x,

i.e.
µ3x4 − 2µ3x3 + µ2(1 + µ)x2 + (1− µ2)x = 0.

1



Therefore the cubic

x3 − 2x2 +
1 + µ

µ
x +

1− µ2

µ3
= 0.

has roots p, q, r. Therefore p + q + r = 2, so q + r = 2− p = (µ + 1)/µ, and pqr = −(1− µ2)/µ3,
so qr = (1 + µ)/µ2.

By the Chain Rule,

(F 2
µ)′(q) = F ′µ(Fµ(q))F ′µ(q)

= F ′µ(r)F ′µ(q)

= µ2(1− 2r)(1− 2q)
= µ2(1− 2(r + q) + 4rq)

= µ2

(
1− 2

µ + 1
µ

+ 4
1 + µ

µ2

)

= −µ2 + 2µ + 4.

Elementary calculations show that the quadratic −µ2 + 2µ + 4 is a decreasing function of µ for
µ > 1 and that, within this region,

−µ2 + 2µ + 4 =
{

1 at µ = 3
−1 at µ = 1 +

√
6.

It follows that q, r are attracting periodic points of Fµ for 3 < µ < 1 +
√

6 and repelling periodic
points for µ > 1 +

√
6.

When µ = 1 +
√

5,
(F 2

µ)′(p) = (F 2
µ)′(q) = −µ2 + 2µ + 4 = 0.

The 2-cycle is superattracting.

2



PMA324 Chaos 2009–10

Question Sheet 6

To be handed in on Thursday 12 November.

1. Using the Intermediate Value Theorem, show that if f : R → R is a continuous function with a
periodic point, then f has a fixed point.

2. The ‘doubling construction’.
Given a continuous function f : [0, 1] → [0, 1] we define the double F of f by

F (x) =





2
3 + 1

3f(3x) (0 6 x 6 1
3 )

αx + β ( 1
3 < x < 2

3 )

x− 2
3 ( 2

3 6 x 6 1),

where the constants α, β are chosen to make F continuous at 1/3 and 2/3.

(a) Draw sketch graphs of a typical f (draw a random squiggle) and the corresponding F to
illustrate this construction.

(b) Show that F has a fixed point in the interval (1/3,2/3). Call it x0. By observing that

|F (x)− x0| > 2|x− x0| (x ∈ (1/3, 2/3)),

or otherwise, prove that F has no periodic points in (1/3,2/3) except x0.

(c) Show that there are no periodic points of odd order in [0, 1/3] ∪ [2/3, 1].

(d) Show that if p ∈ [0, 1] is a periodic point of order n for f , then the points p/3 and (p + 2)/3
are periodic of order 2n for F .

(e) Show that all the periodic points of F in [0, 1/3] ∪ [2/3, 1] are of the above form.

To summarize: you have shown that the orders of the periodic points of F are twice the orders of
the periodic points of f , together with 1.

3. Find a continuous function f : [0, 1] → [0, 1] with at least one fixed point, but no periodic points
of order greater than 1. Using the doubling construction, deduce that, for every n > 0, there is a
continuous function Fn : [0, 1] → [0, 1] with at least one periodic point of order 2n, but no periodic
points of orders other than 1, 2, 4, 8, . . . , 2n.



PMA324 Chaos 2009–10

Question Sheet 6: Solutions

1. Using the Intermediate Value Theorem, show that if f : R → R is a continuous function with a
periodic point, then f has a fixed point.

If f(x) > x for all x, then for every p ∈ R the sequence p, f(p), f2(p), . . . is strictly increasing, so
we cannot have fn(p) = p with n > 1; p cannot be periodic. Likewise, if f(x) < x for all x, then f
has no periodic points. Therefore, if f has a periodic point, then there must exist x, y such that
f(x) 6 x and f(y) 6 y; i.e. f(x)− x 6 0 and f(y)− y > 0. By the Intermediate Value Theorem,
there is a point p between x and y with f(p)− p = 0; i.e. p is a fixed point of f .

2. Given a continuous function f : [0, 1] → [0, 1] we define the double F of f by

F (x) =





2
3 + 1

3f(3x) (0 6 x 6 1
3 )

αx + β ( 1
3 < x < 2

3 )

x− 2
3 ( 2

3 6 x 6 1),

where the constants α, β are chosen to make F continuous at 1/3 and 2/3.

(a) Draw sketch graphs of a typical f and the corresponding F to illustrate this construction.

f

0 0

1

1

1

1

F

(b) Show that F has a fixed point in the interval (1/3,2/3). Call it x0. By observing that

|F (x)− x0| > 2|x− x0| (x ∈ (1/3, 2/3)),

or otherwise, prove that F has no periodic points in (1/3,2/3) except x0.
The function F is continuous in [1/3,2/3] and

F (
1
3
)− 1

3
> 1

3
> 0 > −2

3
= F (

2
3
)− 2

3
.

By the Intermediate Value Theorem, F (x) − x has a zero in (1/3,2/3); i.e. F has a fixed
point, x0, say.
In (1/3,2/3), F has the form F (x) = αx + β. We have

1
3
α + β = F (

1
3
) > 2

3
,

2
3
α + β = F (

2
3
) = 0.

Hence α 6 −2. Writing F in the form

F (x) = x0 + α(x− x0) (
1
3

6 x 6 2
3
),

1



we see that,

|F (x)− x0| = |α| |x− x0| > 2|x− x0| (
1
3

6 x 6 2
3
),

Repeated application of this shows that, for x ∈ (1/3, 2/3),

|Fn(x)− x0| > 2n|x− x0|,
provided F (x), . . . , Fn−1(x) ∈ (1/3, 2/3). It follows that, for x ∈ (1/3, 2/3)\{x0}, the iterates
Fn(x) eventually leave (1/3,2/3). Since F maps [0, 1/3]∪ [2/3, 1] into itself, the iterates can
never return to (1/3,2/3) having once left it. Therefore, no such x can be periodic.

(c) Show that there are no periodic points of odd order in [0, 1/3] ∪ [2/3, 1].
Since F : [0, 1/3] → [2/3, 1] and F : [2/3, 1] → [0, 1/3], we see that if n is odd then Fn :
[0, 1/3] → [2/3, 1] and Fn : [2/3, 1] → [0, 1/3]. Therefore Fn has no fixed points in [0, 1/3] ∪
[2/3, 1]; hence F has no periodic points of odd order in this set.

(d) Show that if p ∈ [0, 1] is a periodic point of order n for f , then the points p/3 and (p + 2)/3
are periodic of order 2n for F .
If p ∈ [0, 1], then (p + 2)/3 ∈ [2/3, 1] and

F ((p + 2)/3) = p/3,

F (p/3) = (f(p) + 2)/3.

Hence

F 2k((p + 2)/3) = (fk(p) + 2)/3,

F 2k(p/3) = fk(p)/3. (1)

Thus, if p is periodic of period k for f , then p/3 and (p + 2)/3 are periodic of period 2k
for F , and if either p/3 or (p + 2)/3 is periodic of period 2k for F , then p is periodic of
period k for f .
If, now, p is periodic of order n for f , then p/3 and (p + 2)/3 are periodic of period 2n for
F and if either had a smaller order, say 2m < 2n, (it has to be even, by the previous part),
then p would have period m < n for f , contradicting the assumption that n is the order of p.

(e) Show that all the periodic points of F in [0, 1/3] ∪ [2/3, 1] are of the above form.
If x/3 ∈ [0, 1/3] or (x + 2)/3 ∈ [2/3, 1] is periodic, then its order must be even and so, by
(1), x is periodic for f and so these points are of the above form.

3. Find a continuous function f : [0, 1] → [0, 1] with at least one fixed point, but no periodic points
of order greater than 1. Using the doubling construction, deduce that, for every n > 0, there is a
continuous function Fn : [0, 1] → [0, 1] with at least one periodic point of order 2n, but no periodic
points of orders other than 1, 2, 4, 8, . . . , 2n.

The function f(x) = x has every point fixed and therefore no periodic points of higher order.

Defining F0 = f starts an inductive construction of the desired functions Fn. Given Fn with a
periodic point of order 2n but none of orders other than 1, 2, 4, 8, . . . , 2n, we define Fn+1 to be
the double of Fn. Then Fn+1 has a periodic point of order 2n+1, but none of orders other than
2, 4, 8, . . . , 2n+1 and 1.

NOTE: in order to get a similar example g with g : R → R it suffices to take f as above and
define

g(x) =





f(0), x < 0;
f(x), 0 6 x 6 1;
f(1), x > 1.

.

Because g maps R → [0, 1] and [0, 1] → [0, 1], iterates of a point outside [0, 1] go into [0, 1] and
remain there, so points outside [0, 1] can never be periodic. Inside [0, 1], gn(x) = fn(x) for all n,
so g has the same periodic points as f , with the same orders. Therefore g : R→ R has precisely
the same set of orders of periodic points as f : [0, 1] → [0, 1].

2



PMA324 Chaos 2009–10

Question Sheet 7

Not to be handed in. Solutions will be posted on Wednesday 25 November.

1. Show that there is a continuous function f : R → R with a periodic point of order 7 and no
periodic points of order 5. (Hint: make f(0) = 3, f(1) = 6, f(2) = 5, f(3) = 4, f(4) = 2,
f(5) = 1, f(6) = 0.)

2. Show that there is an everywhere differentiable function f : R → R which has a periodic point
of order 5, but no periodic points of order 3. You need not define the function explicitly, but
you should explain how it is constructed. It will be a smoothed version of the example given in
lectures, but you need to specify what properties are preserved in the smoothing in order that the
proof still works.



PMA324 Chaos 2009–10

Question Sheet 7: Solutions

1. Show that there is a continuous function f : R → R with a periodic point of order 7 and no
periodic points of order 5. (Hint: make f(0) = 3, f(1) = 6, f(2) = 5, f(3) = 4, f(4) = 2,
f(5) = 1, f(6) = 0.)

Let f : R → R be defined as suggested, with f linear between the points 0, 1, . . . , 6 and f(t) = 3
for t < 0, f(t) = 0 for t > 6. Then 0,1,2,3,4,5,6 are periodic points of f of order 7, and there are
no periodic points outside [0, 6], since f : R \ [0, 6] → [0, 6].

We may show how intervals are mapped under f by writing:

[2, 3]
f→→ [4, 5]

f→→ [1, 2]
f→→ [5, 6]

f→→ [0, 1]
f→→ [3, 6]

f→→ [0, 4]
f→→ [2, 6]

f→→ [0, 5]
f→→ [1, 6]

f→→ [0, 6].

Hence

f5([2, 3]) = [3, 6],
f5([4, 5]) = [0, 4],
f5([1, 2]) = [2, 6],
f5([5, 6]) = [0, 5],
f5([0, 1]) = [1, 6],

so there are no fixed points for f5 outside [3,4], except possibly the points 0,1,2,3,4,5,6, but they
are periodic points of f of order 7 and so cannot be fixed points for f5.

But on [3,4] we have

[3, 4]
f→→ [2, 4]

f→→ [2, 5]
f→→ [1, 5]

f→→ [1, 6]
f→→ [0, 6],

all of these being monotonic decreasing functions. Hence f5 is monotonic decreasing on [3,4].
Therefore, f5 has at most one fixed point in that interval, and this must be the fixed point p of f .
There are no periodic points of f outside [0,6], since f(R) ⊆ [0, 6]. Thus f has no periodic points
of order 5.

2. Show that there is an everywhere differentiable function f : R→ R which has a periodic point of
order 5, but no periodic points of order 3.

We need only modify the example given in the lectures, “rounding off the corners” of the graph,
so as to produce a differentiable function f such that f(x) = 2 for x < 0, f(0) = 2, f(1) = 4,
f(2) = 3, f(3) = 1, f(4) = 0, f(x) = 0 for x > 4 and f is monotonic on [0,1] and on [1,4]. The
proof given for the example treated in the lectures uses only these properties of the function, and
so the same proof shows that f has periodic points of order 5 but not of order 3.

A specific (rather slick) example of such a function is

f(x) =





2 (x < 0)
3− cosπx (0 6 x < 1)
2 + 2 cos π

3 (x− 1) (1 6 x < 4)
0 (x > 4).



PMA324 Chaos 2009–10

Question Sheet 8

To be handed in on Wednesday 2 December.

1. Let f : X → X and g : Y → Y be topologically conjugate by the homeomorphism h : X → Y .
Show that if p ∈ X is an eventually periodic point for f , then h(p) is an eventually periodic point
for g.

2. Show that no two of the following dynamical systems (fi, Xi) are topologically conjugate.

(a) X1 = R, f1(x) = x2 (x ∈ R);

(b) X2 = R, f2(x) = x3 (x ∈ R);

(c) X3 = R, f3(x) = x2 (x > 0), f3(x) = 0 (x < 0);

(d) X4 = Z, f4(x) = x2 (x ∈ Z).

3. Show that the dynamical systems (f,R+), (g,R) given by f(x) = x2 and g(x) = 2x are topologi-
cally conjugate. (Here R+ = {x ∈ R : x > 0}.)

4. For λ, µ > 0 we define Hλ,µ : R→ R by

Hλ,µ(x) = µx(1− λx2) (x ∈ R).

Show that (Hλ,µ,R) is topologically conjugate to (H1,µ,R), for every λ, µ > 0. (Try a homeomor-
phism of the form x 7→ ax (x ∈ R), for a suitable constant a.)

PMA324 Chaos 2009–10

Question Sheet 8: Solutions

1. Let f : X → X and g : Y → Y be topologically conjugate by the homeomorphism h : X → Y .
Show that if p ∈ X is an eventually periodic point for f , then h(p) is an eventually periodic point
for g.

If p is an eventually periodic point for f , then there exist 0 6 r < s such that fr(p) = fs(p).
Hence

gr(h(p)) = h(fr(p)) = h(fs(p)) = gs(h(p)).

Therefore h(p) is an eventually periodic point for g.

2. Show that no two of the following dynamical systems (fi, Xi) are topologically conjugate.

(a) X1 = R, f1(x) = x2 (x ∈ R);

(b) X2 = R, f2(x) = x3 (x ∈ R);

(c) X3 = R, f3(x) = x2 (x > 0), f3(x) = 0 (x < 0);

(d) X4 = Z, f4(x) = x2 (x ∈ Z).



First we observe that Z and R are not homeomorphic, since, for example, the property ‘every
convergent sequence is eventually constant’ is true in Z but not in R. Now a topological conjugacy
is, amongst other things, a homeomorphism. Therefore there can be no topological conjugacy
between (f4, X4) and any of the other systems.

Next, we count fixed points: (f1, X1) has two (0 and 1), as does (f3, X3), but (f2, X2) has three
(-1, 0 and 1). Therefore, (f2, X2) is not topologically conjugate to any of the others.

Finally, we count eventually fixed points: (f1, X1) has three (-1, 0 and 1), whilst (f3, X3) has
infinitely many, since all points x 6 0 are eventually fixed. Therefore these two systems can not
be topologically conjugate. This completes the proof.

3. Show that the dynamical systems (f,R+), (g,R) given by f(x) = x2 and g(x) = 2x are topologi-
cally conjugate. (Here R+ = {x ∈ R : x > 0}.)
Let h : R+ → R be defined by h(x) = log x. Then h is a homeomorphism, since it is a bijection
and both the logarithm and its inverse, the exponential function, are continuous. Moreover

h(f(x)) = log(x2) = 2 log x = g(h(x)),

so h is a topological conjugacy.

4. For λ, µ > 0 we define Hλ,µ : R→ R by

Hλ,µ(x) = µx(1− λx2) (x ∈ R).

Show that (Hλ,µ,R) is topologically conjugate to (H1,µ,R), for every λ, µ > 0.

Let h(x) = ax (x ∈ R) with a 6= 0. Then

Hλ,µ(h(x)) = µax(1− λa2x2) = aµx(1− x2) = h(H1,µ(x)),

if a = ±λ−1/2.

PMA324 Chaos 2009–10

Question Sheet 9

Final homework, not to be handed in. Solutions will be posted on Thursday 3 December.

1. Using (a) the fact that a known cardioidal region forms part of the Mandelbrot set M and (b)
the characterization of M in terms of the behaviour of the sequence (Qn

c (0)), decide whether or
not each of the following points c lies in M :

3
16

, 0.4,
3i

2
.

You may use a calculator.

2. Let c = 3/16. Find the fixed points of Qc and classify them as attracting/repelling. By considering
inverse images of repelling fixed points, or otherwise, find four distinct points in Jc.
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Question Sheet 9: Solutions

1. Using (a) the fact that a known cardioidal region forms part of the Mandelbrot set M and (b) the
characterization of M in terms of the behaviour of the sequence (Qn

c (0)), decide whether or not
each of the following points c lies in M :

3
16

, 0.4,
3i

2
.

You may use a calculator.

The cardioidal region intersects the real axis in the interval (−3/4, 1, 4), so 3/16 ∈ M .

We calculate (Qn
c (0)) for c = 0.4 and n = 1, 2, 3, . . ., up to the point when |Qn

c (0)| > 2. The
sequence goes

0.4,

0.56,

0.7136,

0.90922496,

1.2266900278870016,

1.90476842451741276309285823840256,

4.02814275103854676289545387224631 (approx.).

Since |Q7
c(0)| > 2, we have c 6∈ M .

We do the same for c = 3i/2 and find that

Q2
c(0) = −9

4
+

3
2
i,

so
∣∣Q2

c(0)
∣∣ =

√
81
16

+
9
4

=

√
117
16

>

√
64
16

= 2.

so c 6∈ M .

2. Let c = 3/16. Find the fixed points of Qc and classify them as attracting/repelling. By considering
inverse images of repelling fixed points, or otherwise, find four distinct points in Jc.

To find the fixed points of Qc, we solve

z2 +
3
16

= z,

obtaining the two roots z = 3/4 and z = 1/4. The root 1/4 is an attracting fixed point, since
|Q′c(z)| = |2z| < 1. Similarly, the root 3/4 is a repelling fixed point, since |2z| > 1.

The repelling fixed point 3/4 is in Jc. So too are iterated inverse images of this point. We find
some of these.

Solving Qc(z) = 3/4, we obtain

c = ±
√

3
4
− c = ±

√
12
16
− 3

16
= ±

√
9
16

= ±3
4
.

This gives us a second point in Jc, namely −3/4.

Solving Qc(z) = −3/4, we obtain

c = ±
√
−3

4
− c = ±

√
−12

16
− 3

16
= ±

√
−15

16
= ±

√
15
4

i.

This gives us two further points in Jc, as desired.


